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Several snapshots of measured data are available in practice.
Abstract -This paper provides a survey of space-time Using the snapshots of data, the problem at hand is to detect

adaptive processing for radar target detection. Specifically, desired targets in the presence of interfering signals. An
early work on adaptive array processing from the point of important requirement is that of a constant probability of
view of maximum signal-to-noise-ratio and minimum mean false alarm. In practice, the interference statistics, the
squared error perspectives are briefly reviewed for interference spectral characteristics, and the target complex
motivation. The sample matrix inversion method of Reed, amplitude are unknown. Thus, the problem of adaptive radar
Mallet and Brennan is discussed with attention devoted to its target detection in interference is equivalent to the problem
convergence properties. Variants of this approach such as of statistical hypothesis testing in the presence of nuisance
the Kelly GLRT, adaptive matched filter and ACE tests are parameters. Present day computing power permits the use of
considered. Extensions to handle the case of non-Gaussian well-known tools from statistical detection and estimation
clutter statistics are presented. Current challenges of limited theory in the radar problem. The Doppler-Wavenumber or
training data support, computational cost, and severely angle Doppler spectrum provides a unique representation of a
heterogeneous clutter backgrounds are outlined, signal in a three dimensional plane. Hence, the problem of
Implementation and performance issues pertaining to space-time adaptive processing (STAP) may also be viewed
reduced rank and model-based parametric approaches are as a spectrum estimation problem where the two-dimensional
presented. Fourier transform of spatio-temporal data affords separation

1. INTRODUCTION of the desired target from interference. This scenario is
described in Figure 1.

Signal detection using an array of sensors has offered
significant benefits in a variety of applications such as radar, 2. STAP OUTLINE
sonar, satellite communications, and seismic systems.
Employing an array of sensors overcomes the directivity and Typically, a radar transmits a burst of N pulses in a
beamwidth limitations of a single sensor. Additional gain coherent processing interval. The data measured at the array
afforded by an array of sensors leads to improvement in the thus consists of a JNxl complex valued vector, where J is
Signal-to-Noise-ratio, resulting in an ability to place deep the number of elements in the array. This corresponds to N
nulls in the direction of interfering signals. Finally, a system snapshots obtained from the J element array. Furthermore,
using an array of sensors affords enhanced reliability since most radars employ a high pulse repetition frequency
compared to a single sensor system. For example, sensor (PRF), there is a temporal correlation between successive
failure in a single sensor system leads to severe degradation pulses at a given element of the array. Furthermore, the array
in performance whereas sensor failure in an array results in geometry introduces an element-to-element spatial
graceful performance degradation. correlation as shown in Figure 2. Thus in the context of

STAP, the unknown interference spectral characteristics

A problem of considerable importance in this context is correspond to the unknown spatio-temporal correlation or
the adaptive radar detection of desired targets against a covariance matrix of the JNxl complex-vector under the
background of interference consisting of clutter, one or more condition that the data consists of interference alone.
jammers and background noise. The radar receiver front end Additionally, interference statistics can be either Gaussian or
consists of an array of antenna elements. The received signal non-Gaussian. In the latter case, all STAP methods would
is an electromagnetic plane wave impinging on the array be based on a suitable model for the interference statistics.
manifold. The electromagnetic plane wave induces a voltage
at each element of the array, which constitutes the measured The presence of unknown parameters in the problem
data. precludes the use of a uniformly most powerful test for the

adaptive target detection problem. This is due to the fact that
joint maximization of a likelihood ratio over the domain of
unknown parameters is extremely difficult. Hence, ad hoc

KIMAS 2003, October 1-3, 2003, Boston, MA, USA. approaches have been proposed to overcome this problem.
Copyright 0-7803-7958-6/03/$17.00 © 2003 IEEE. Most of the work in the area of STAP is based on the
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Gaussian model for the interference. STAP for non-Gaussian the latter case, this is due to the fact that the sample
interference has received increased attention in recent times. covariance matrix suffers from significant estimation errors

[21-23]. Consequently, a much larger training data support
Succinctly stated, most classical STAP algorithms consist of (compared to the Gaussian case) is needed.
the following steps depicted in Figure 3.
(i) Estimate nuisance parameters (interference covariance On the other hand, collecting sufficient training data
matrix and target complex amplitude) depends on system considerations such as bandwidth,
(ii) Form a weight vector based on the inverse covariance frequency agility, and range extent as well as environmental
matrix conditions such as the non-homogeneity and non-stationarity
(iii) Calculate the inner product of the weight vector and the of the scanned areas. These factors preclude the collection of
data vector from a cell under test large amounts of training data. The problem can become
(iv)Compare the squared magnitude of the inner product in severe with increasing dimensionality. For example, 10
step (iii) with a threshold determined according to a specified snapshots of data collected from a 32 element antenna array
false alarm probability, gives rise to the problem of estimating a 320x320 covariance

matrix. Using the rule of the RMB beamformer, this
Several interesting theoretical interpretations have been necessitates the use of 640 target-free training data vectors to
offered for the STAP algorithms in the literature. However, estimate the covariance matrix. Assuming an instantaneous
from a practical standpoint the key issues include: RF bandwidth of 200 KHz, the representative training data

assumption calls for wide sense stationarity to prevail over a
(I) Sufficient target-free training data support to form an range of 960 Kin. Wide sense stationarity of the clutter
estimated interference covariance matrix, seldom prevails over such a large region.
(II) Non-singular estimated covariance matrix to form the
weight vector. Therefore, there is a need to investigate methods, which
(III) Computational complexity in forming the weight vector, offer the potential for reducing the computational complexity
(IV) The ability to maintain a constant false alarm rate and the training data requirements for STAP in Gaussian and
(CFAR) and robust detection performance. non-Gaussian interference scenarios. The work of

Rangaswamy and Michels [18-20,24,25] provides a useful
3. IMPLEMENTATION ISSUES model-based parametric STAP method, which offers the

potential for considerable reduction in training data support
Early work in the 1960s by Widrow [1] (least squares and computational complexity. In this method, the data

method), Applebaum [2] (maximum signal-to-noise-ratio processes are whitened through the use of multi-channel
criterion) and Howells [3] (sidelobe canceller) suggested the prediction error filters whose coefficients are chosen so as to
use of feedback loops with an appropriate error criterion to match the inverse spectral characteristics of the interference.
control the convergence of iterative methods for calculating An important feature of this method is the lack of a need to
the weight vector in adaptive arrays. However, these methods form and invert the interference covariance matrix.
were slow to converge to the steady-state solution. Consequently, the limitation of O(M3) does not apply here.
Fundamental work by Reed, Mallet and Brennan [4] (RMB Furthermore, the use of a low model order filter enables
beamformer) in 1974 showed that the sample matrix inverse significant reduction in training data support. The low model
method offered considerably better convergence properties order approximation has been found to work well in a variety
compared to the work of Widrow et. al. Key requirements of of simulated and real data scenarios. Figure 4 provides a
the RMB beamformer are the availability of at least JN brief overview of the model based parametric method using
training data vectors for forming the sample covariance prediction error filters. The model based parametric method
matrix and the availability of 2JN training data vectors to provides excellent performance in both Gaussian [25-27] and
achieve performance within 3 dB of the optimal SNR. non-Gaussian interference scenarios [18-20 and references
Computational complexity of the RMB method is O(M3) therein]. Other methods such as the cross spectral metric
where M=JN. A drawback of the RMB approach is the lack (CSM) [28], auxiliary vector method (AVM) [29], reduced
of CFAR. Modifications and extensions of this approach to dimension STAP [30], and multistage Wiener filter (MWF)
obtain CFAR was the focus of a number of efforts in the [31] have been proposed for reducing the computational
1980s and early 1990s. These resulted in a number of complexity and training data support requirements. A block
algorithms such as the Kelly-GLRT[5], the adaptive matched diagram of these methods is shown in Figure 4. Additional
filter [6,7], and the adaptive coherence estimator [8-13]. reduced dimension STAP methods include element-space,
However, training data requirements and computational beam-space pre-Doppler and post-Doppler techniques[32]
complexity of the algorithms remain unchanged from that of and the principal components inverse (PCI) [33] and
the RMB beamformer. Performance of all sample eigencanceller [34, 35] approaches. An important
covariance based STAP methods degrade in heterogeneous requirement of these methods is that the reduced-dimension
[14-17] and non-Gaussian interference scenarios [18-20]. In weight vector span the clutter subspace and the signal
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Figure 3: Classical STAP Processing
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